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Abstract—Software obfuscation aims to protect the intellectual
property of a computer program by preventing reverse engineer-
ing. Code metamorphism is a dynamic approach of obfuscation
in which a program refactors itself at run time while preserving
its semantics. Surveys report that metamorphic software is
more resilient to both automated and human-driven analysis in
comparison with usual obfuscation methods such as encoding or
encryption. However, existing metamorphic engines are heuristic
and mutate the code in a deterministic manner. To address this
issue, this paper presents a new metamorphic framework based
on a predictive model that was trained in order to generate finite
sequences of machine code instructions given a specific program
context. In contrast with a typical context-agnostic metamorphic
framework which would restructure specific chunks in the code,
the presented model can rewrite any sequence of instructions in
order to fit a specific context in the computer program. This
model reached an accuracy of 99.86% on the prediction of new
sequences of instructions, with an inference time of 50ms per
sequence. The design and the architecture of the model are
presented, methods to integrate the model within a turn-key
solution are proposed, and areas of improvement are further
discussed.

Index Terms—metamorphism, code mutation, machine code,
deep learning, recurrent neural networks.

I. INTRODUCTION

Unprotected programs leave organizations open to piracy
and technology stealing. Attackers use reverse engineering
tools known as disassemblers to convert a binary executable
back into assembly code, in order to find vulnerabilities, to
bypass security protocols or to understand the underlying logic
of the program. Several anti-tamper methods can be employed
to discourage reverse engineering [1], [2]. Such obfuscators
artificially increase the structural entropy1 of a program,
making it difficult to understand through human-driven or
automated analysis. Unfortunatly, protecting a program from
attackers without impairing its behavior is notoriously difficult
[4]. While obfuscation may be immune to static disassemblers,
what emerges from this process often comes with an increased
computational cost and a loss of flexibility. Moreover, once the
code has been deobfuscated, there are no barriers left to the
attacker.

Metamorphism is a dynamic solution to obfuscation. A
metamorphic program will change its internal structure at each
run, while keeping the same functionalities. As it is constantly
refactoring itself, it is intricate to understand using reverse
engineering. Metamorphic software has also found defensive

1The entropy of a program is usually measured using the Shannon Entropy
or its asymptotic equivalent Kolmogorov complexity [3].

value for attack mitigation by making known vulnerabilities
impossible to exploit in a consistent way [5].

There are two distinct approaches for metamorphic code
generation. First, the high-level source code of a program can
be dynamically generated or mutated. It either implies meta-
programming and templating frameworks2, computational re-
flection3, or using a specialized language to generate the
source code. A notable example is the FFTW library for com-
puting the discrete Fourier transform, which is dynamically
generating performance-critical C code using Objective Caml
[8]. In the second approach, the mutations are not generated
through high-level source code but directly in machine code.
The program makes bitwise modifications to itself at runtime,
either in memory or in its binary file. This method is often used
by computer malwares in order to hide from the signature de-
tection of antiviruses but can also prevent reverse engineering.
Machine code metamorphism can be achieved through a broad
range of methods: from garbage code insertion and instructions
or registers swapping [9], to more advanced techniques such
as structural reordering [10], [11]. Since the aforementionned
methods are mutating the machine code with a certain amount
of determinism, a well trained heuristic agent could detect and
prevent the mutations. Ideally, a perfect metamorphic engine
would receive any piece of code of variable length and would
tranform it into a roughly equivalent code using a completely
different set of instructions.

Therefore, the main goal of this paper is to leverage the
recent advances in the field of deep learning and to use
the black box predictions of a deep neural network as an
non-deterministic added value, in order to build a predictive
model that can rewrite any finite sequence of instructions of
machine code into another functionally equivalent sequence.
This paper is organized as follows. Section II provides a
formal description on the mutation of machine code through a
predictive model, as well as its practical limitations. Section III
exposes a technical implementation of this framework, from
the aggregation of the dataset to the model architecture. In
Section IV, the results of the predictive model are presented
and further discussed.

2Meta-programming is a programming technique which makes extensive
use of the type-system of a language to execute a desired algorithm at compile
time [6].

3Reflection is a way to retrieve and modify a program at run time. It is
most often found in bytecode-compiled languages [7].
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II. FORMAL FRAMEWORK

The environment of this study depends on both a processor
architecture and a program file format. While this work can
be transposed to different technologies, it has been conducted
on the most common architecture and executable file format
association, respectively the x86 instruction set for the IA-32
architecture from Intel [12] and the Win32 Portable Executable
from Microsoft [13].

Each x86 instruction in assembly language is the combina-
tion of an operation code (OP-Code) and several arguments,
which get compiled into machine code. For instance, the
instruction MOV EAX, EBX would be compiled as 89 D8.
The OP-Code for the instruction move a 32 bits register into
another 32 bits register is 89, and the arguments would be
the two registers, respectively represented as D and 8.

A. Problem Formulation

During its execution, a program has a state composed of
the processor registers, the stack, the heap, and other data
segments that are dynamically mapped in memory [14]. Let
E denote the space of the states of a program, and E0, E1 ∈
E . The goal of any instruction i : E → E is to alter the
current state of a program into a new different state. Since the
instructions are executed sequentially as a Markov process, it
is possible to infer any fitting sequence of instructions that
would alter any state E0 into a new state E1 (fig. 1).

E0 E
′
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0
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′
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Fig. 1: Different sequences of instructions (in) and (jm) can
alter any state E0 into the same destination state E1.

Let n ∈ N?, and (ik)k∈[[0,n]] with ∀k, ik : E → E a finite
sequence of n instructions that alters E0 into E1. The goal of
this metamorphic engine is to find (jk)k∈[[0,m]],m ∈ N?, such
as : ®

(j0 ◦ . . . ◦ jm)(E0) = (i0 ◦ . . . ◦ in)(E0) = E1

∃k, (ik) 6= (jk)

For each sequence of instructions (in) to be replaced,
another sequence (jm) that alters the same initial state into the
same final state must be found. In practice, m = n is needed
because replacing a sequence of instructions with another
sequence of different length is a complex process, due to the
changes it induces in offset addressing. However, there exist
an identity operation in E , known as the NOP instruction (OP-
Code 0x90). Hence, in the case where m < n the sequence
can be padded with NOP instructions.

B. Reduced program state

Capturing the whole state of a program between two instruc-
tions is unrealistic: several megabytes of memory would have
to be processed at each iteration of the metamorphic engine.
To reduce the amount of parameters, a restricted space Er ⊂ E
has been used.

The heap and the segments are memory sections that require
direct addressing to be accessed: instructions are interacting
with a pointer to a variable instead of its content. Including
these sections in Er would either require to store and process
the addresses in pair with the variables in our model, or
to make a direct object evaluation inducing an unrealistic
overhead. Hence, such memory sections have been discarded
in Er.4

The stack is a last-in-first-out data structure that can’t be
accessed in place. Let S ∈ {0, 1}N×32 describe a stack of N
variables made of 32 bits each. If the last element is removed
from the stack (pop), then the new stack S′ can be defined as
an upshift of S: S′i,j = Si+1,j . At the contrary, if a new 32-
bits variable v ∈ {0, 1}32 is added (push), then S′i,j = Si−1,j
and S′0,j = vj . Let U = δi+1,j ∈ RN×N denote the upper
shift matrix with δ the Kronecker delta. A stack pop can then
be represented as U · S and a stack push as U> · S without
taking v into account. Using ρ as the Pearson product-moment
correlation coefficient, two new parameters can be defined in
the model:

cPOP = ρS′,U ·S =
cov(S′, U · S)
σS′σU ·S

cPUSH = ρS′,U>·S =
cov(S′, U> · S)
σS′σU>·S

Then, cPOP will be close to 1 in case of a stack pop, and
cPUSH will be close to 1 in case of a stack push. Since the stack
of a program is usually large, keeping only cPOP, cPUSH and
the top of the stack is enough to describe this data structure
with only a few parameters in our model.

The state of a program finally includes the processor
registers. Segment and pointer registers are interacting with
memory addresses and won’t be observed. All the registers
bound to a processor extension such as SIMD are too specific
and subtle to be captured. Hence, only the general purpose
registers and the flag register will be observed.

Finally, Er is made of the following observations: the first
3 variables on the stack, cPOP, cPUSH and registers EAX, EBX,
ECX, EDX, EDI, ESI and EFLAGS. It is equinumerous to
{0, 1}322, a vector of parameters containing all the bits of the
aforementioned observations. To fit this reduced space, the
only instructions to be captured are ir : Er → Er. Therefore,
instructions with direct addressing, function calls and returns,
jumps and x86 extensions (SSE, AVX...) will be discarded in
the collected dataset.

4Since different threads in a single program share the same stack but a
different heap, this decision also makes the study relevant to multi-threaded
programs.
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III. DESIGN AND IMPLEMENTATION

The goal is to gather a training dataset D made of sequences
of instructions of maximum length T along with their effects
on the state of a program:

D =
{
(iT ), (ET+1) | ∀k ≤ T, ik(Ek) = Ek+1

}
This dataset will be used to train a recurrent neural network

N to output (iT ) = N((ET+1)). The complete workflow from
data aggregation to model inference is illustrated in figure 2
and contains the following steps :

1) Execute a program step by step within a debugger and
capture sequences of instructions along with the states
between the instructions.

2) Clean, tidy and prepare the gathered data.
3) Stream the data into a Redis database and create input

and output datasets for the predictive model.
4) Train a neural network using the Redis datasets.

R

.exe

GDB

(1)

(2)

(3)

(4)

Computing unitWin32 unit

Fig. 2: The proposed workflow for a practical implementation
of the framework.

The source code for all the aforementioned steps has been
documented and made available on GitHub.5

A. Data aggregation

The GNU Project Debugger6 (GDB) was used to execute
various programs instruction by instruction while observing
their state. This process was automated using the Python
bindings for GDB. To avoid being stuck in event pumps or
in low level loops, GDB will resume the program flow if a
recurring pattern of instructions is repeated too many times. To
keep the control of a program after that its flow was resumed,
breakpoints needs to be placed at the entry of every function,
hence the programs need to be compiled with debug symbols.
This process allowed to gather a dataset of roughly 200.000
sequences of states and instructions, from a corpus of a dozen
open-source programs.

B. Data preparation

For every entered function, the GDB script outputs a semi-
structured JSON file which encapsulates sequences of instruc-
tions, both in NASM and in hexadecimal format, along with all

5GitHub repository: https://github.com/antoinechampion/DeepMetaMorph
6GNU Project Debugger: https://www.gnu.org/software/gdb/. To run this

debugger on the Win32 platform, the MinGW compatibility layer has to be
installed, along with the gdb-python27 package.

of the 32-bits hexadecimal variables from the captured states.
Hence, this data must be consolidated into tensors that will
be served as parameters and outputs to train the predictive
model. Using the dplyr framework for the R programming
language to tidy the data [15], an input tensor X(n)<Tx>

m of m
sequences, Tx states by sequence and n parameters has been
created, along with an output tensor Y <Ty>

m of the same m
sequences and Ty = Tx − 1 instructions by sequence. Each
input parameter X(i)<t>

k is a different bit from one of the
state variables. Consistency of the gathered data has then been
examinated through a visualization of the collected program
states as shown in figure 3.

Fig. 3: Heatmap of the program state activity.

Each row of this heatmap pictures either a register or a stack
variable. The nth column represents the nth bit of the observed
variable using a little-endian encoding. The more times that
bit has been used by the captured instructions, the darker the
color. Hence, the normalized color intensities can be computed
as follows:

H =
1

m Tx

m∑
i=1

Tx−1∑
t=1

|X<t+1>
i −X<t>

i |

This heatmap depicts an homogeneous stack usage column-
wise: every push or pop instruction will shift the whole stack
up or down. The registers EDI and ESI are most of the time
used to store addresses. Hence, by our scrapping rules they
are barely not used. Next, the 2nd, 4th and 6th bits of EFLAGS
are reserved in the x86 architecture, and are not used at all.
Same goes for all EFLAGS bits whose index is greater than
8. As a whole, this heatmap reflects the x86 architecture and
the data looks consistent, so it can be further exploited.

However, the dataset is large of several gigabytes. A first
iteration of model was trained on disk, but the I/O interruptions
were by far the limiting factor that negatively impacted the
training duration. As a result, the dataset was loaded in-
memory into a Redis7 database. Redis set, an unordered data
structure optimized for random access, was used to stream
data in order to train the model.

7Redis: https://redis.io/
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C. Predictive model

The model has to estimate the conditional probability
p(i0, · · · , iTy|E0, · · · , ETx). If the predited probability for
a whole sequence (iTy) is judged satisfying, we can safely
assume that it can be used to replace the existing sequence
in machine code, with the goal of transistioning from E0 to
ETx. The choice for a model architecture was based on several
criterias coming from the gathered dataset:
• Inputs and outputs are sequences, hence the need for a

recurrent model.
• The large amount of samples better suits a neural archi-

tecture.
• The median sequence length is 4, which allows a simple

recurrent model without any attention mechanisms to
handle such short sequences properly.

• Input and output sequences have different lengths with
non-monotonic relationship, so a sequence to sequence
(seq2seq) model should be used. [16]

Based on those criterias, an encoder-decoder LSTM using
the seq2seq inference model has been implemented as shown
in figure 4.

E0 E1 ... ETx

h0 h1 ... hTx

Input states

Hidden states

(GO) i0 iTy−1

Encoder

Decoder

i1 iTyi0Instructions

...

...

LSTM

LSTM

Decoder input

Fig. 4: Representation of the predictive model.

A first layer of LSTM cells encodes an input sequence of
variable length into a fixed-dimensional representation hTx.
The latter is made of both the memory state and the carry state
from the last LSTM pass on the input sequence. Given hTx, a
second batch of LSTM cells are predicting a fitting sequence
of instructions. During the training stage, both the encoder
and the decoder are given inputs from the training dataset. The
mispredictions of the decoder are aggregated in a loss function
which is optimized iteratively using the Adam method [17].
To use the model for inference, the decoder output at step t
must be given as input for the decoder at step t+ 1.

IV. EXPERIMENTAL RESULTS

The model has been built in Python using Tensorflow and
Keras. Unlike in most series prediction models where the
accuracy is measured element-wise in a sequence, in our case

if a single instruction in a sequence is wrong then the whole
sequence is wrong. Hence, the accuracy has been measured
on a full sequence basis. The training of the model has
been stopped when the cross-validation accuracy reached its
maximum, right before it started dropping as overfitting began
to appear. At this state, the accuracy on the test dataset was
99.86%.

However, the accuracy it is not the only important metric:
a metamorphic framework must operate at run time, hence
it must be as few resources demanding as possible. In our
case, the inference of a sequence took in average 50ms on
a high-end computer. Smaller LSTM cells8 or lighter neural
architectures should be explored in further studies in order
to find the best compromise between accuracy and inference
time.

Another opportunity for improvement resides in the data
gathering methodology. Even though many instructions and
program states have been harvested in a short amount of time
by examinating existing programs, this data is coming with
a bias. Some instructions are present only once, hence their
effect is visible through a single change of state. Other instruc-
tions are made of the same OP-Code and a small variation of
their numeric argument, as an index would be incremented
in a loop. Further refinement would be using a dataset of
judiciously crafted instructions, examinated under different
states with contextual execution using a CPU emulator.

Finally, the model has to be integrated within an existing
software, with the aim of predicting new instructions according
to this software’s contextual state. There exist a broad range
of practical methods for supervising a running program and to
alter its instructions. A typical implementation (cf. algorithm
1) is to attach the program to a master process and to use OS
level interrupts to interact with its state.

Algorithm 1 Interact between the model and the program
using OS interrupts

1: function READSTATE(pid)
2: regs← trace registers(pid)
3: stack ← read memory(regs.ESP)
4: return (regs, stack)

5: procedure INSPECT(pid)
6: attach to(pid)
7: while process running(pid) do
8: wait random time()
9: interrupt(pid)

10: adr ← trace instruction(pid)
11: E0 ← ReadState(pid)
12: for i ∈ [0;Ty] do
13: step over(pid)
14: E1 ← ReadState(pid)
15: (i)Ty ← model predict(E0, E1)
16: write to binary exe(adr, (i)Ty

)

8LSTM cells of 256 units have been used in this study.
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However, such an simple implementation lacks flexibility
and sums the overhead due to software interrupts on top of
the one coming from the predictive model. A production-
ready method would involve a significant code refactoring, for
instance by making the program output regular dumps of its
state to a named pipe. The pipe would be read by an external
agent and processed sequentially. For every state dump, the
agent uses a CPU emulator to step over Ty instructions in
order to find back the final state, then sends everything to the
predictive model. The overhead of the agent and the model
would then be separated from the applicative code, hence the
agent could even be externalized to a remote computing unit.

V. CONCLUSION

The presented model can help obfuscating binary executa-
bles with a significant amount of structural entropy in order
to protect their integrity. A novel metamorphic framework has
been proposed: a predictive model that generates series of
machine code instructions to make the transition from one
program state to another, using a neural network made of
LSTM cells. Since the whole state of a program is too big to
be processed in a reasonable amount of time, a method was
found in order to reduce this contextual state into a smaller
representation. A first dataset was gathered from multiple
open-source programs, and was used to train the model. This
led to a promising accuracy score of 99.8%. Further studies
are suggested: (1) building a tailored dataset to both reduce the
bias in the current dataset and to improve the model ability to
generalize, (2) refining the neural architecture in order to find
a good compromise between accuracy and inference speed,
and (3) creating an heuristic agent in charge of generating the
metamorphic code on the fly along with the execution of a
program.
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